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Summary: 12(S)-hydroxyeicosatetraenoic acid methyl ester 1 was synthesized. 1 was converted to 
phosphite 17 which upon treatment with hydrogen peroxide afforded the corresponding 
hydroperoxide 18 (IZ-HPETE methyl ester) with partially retained configuration. 

Although 12(S)-hydroperoxyeicosatetraenoic acid (12(S)-HPETE) and the corresponding 

alcohol 12(S)-HETE have been found in several mammalian sources as metabolites of arachidonic 

acid,* these physiological roles are still unclear. The recent finding that a metabolite of 12-HPETE 

is a second messenger in Aplysia neurons, 2 however, indicates a general importance of 12-HPETE 

in a variety of biological systems. In order to obtain information about the metabolites of 12- 

HPETE in various biological sources, we required sufficient amounts of 12-HPETE. We describe 

here a new synthesis of 12(S)-HETE methyl ester 13 based on Wittig olefination strategy and the 

direct transformation of 1 into 12-HPETE methyl ester in which an unusual nucleophilic 

displacement of phosphite group by hydrogen peroxide with a partially retained configuration 

was observed. 

.(+)-2,3-0-isopropylidene-L-threitol 24 was converted to monoprotected alcohol 35 in 87% 

yield by reaction with KH (1 equiv) followed by TBDMSCI (1 equiv) in THF at 0 “C. Swem oxidation 

of 3 (DMSO-oxalyl chloride, -78 “C, then excess triethylamine) produced crude aldehyde 4 which 

was directly treated with the anion from phosphine oxide 66 (1.5 equiv) and n-BuLi (1.2 equiv) at 

0 Y! in THF in the presence of HMPA followed by silica gel column chromatography (3 : 1 to 1 : 1 

hexane-ethyl acetate) to afford aldehyde 5 in 83% overall yield from alcohol 3 together with 

adduct 7 (14%). Aldehyde 5 was also generated from adduct 7 in 80% yield by treatment with KH 

in THF6 at room temperature for 1.5 h and then silica gel column chromatography. CSs- 

olefination of 5 to 9 was achieved in 81% yield by treatment with the ylid from phosphonium 

bromide 8 (1.5 equiv) and potassium hexamethyldisilazide (1.2 quiv) in toluene at -78 ‘C for 10 

min and then -78 to 0 “C! over 30 min. After desilylation with tetra-n-butylammonium fluoride in 

THI? at 0 *C (98%), the resulting alcohol 10 was again converted to aldehyde 12 (70%) along with 

adduct 137 (17%) via 11 in a similar manner. Direct conversion of 12 to enal 148 was effected by 

exposure to activated alumina (200 mg of 12/3 g) in acetonitrile at room temperature for 30 min 

in 63% yield based on 71% substrate consumption.g Finally. Wittig reagent from phosphonium 

iodide 1510 (3 equiv) and potassium hexamethyldisilazide (2.5 equiv) at -20 ‘C for 20 min in THF 

was allowed to react with the enal 14 in THF in the presence of HMPA at -78 “C to room 

temperature over 2 h to afford 12(S)-HETE methyl ester 1 l1 in 57% yield. In order to determine 
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the optical purity at C-12, 1 was converted to menthoxycarbonate derivative of dimethyl malate 

16 by the following sequence:12 1) conversion of 1 to its menthoxycarbonate derivative with (-)- 

menthylchloroformate and pyridine in toluene; 2) ozonolysis at -78 OC for 10 min in 

dichloromethane followed by treatment with 90% hydrogen peroxide in acetic acid at 60 “C for 16 

h; and 3) esterification with excess diazomethane. The optical purity of the resulting dimethyl 

malate derivative 16 was established to be 95% as determined by capillary GC analysis (ULBON HR- 

1701, 25 m, 190 OC, S isomer: 24.0 min, R isomer: 24.6 min). 
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The reported procedure for the conversion of HBTB to HPETE (MesCl-triethylamine in 

dichloromethane at -65 ‘C followed by treatment with hydrogen peroxide at -100 “C) is known to 

result in a complete racemixation.13 Therefore, we explored a new procedure for the 

transformation of HETE methyl ester into the corresponding hydroperoxide. 12(S)-HBTE methyl 

ester 1 was treated with chlorodiethylphosphite (2 equiv) and triethylamine (3 equiv) in hexane 

at 0 “C for 30 min. The precipitate formed was filtered off and the filtrate was evaporated under a 

nitrogen stream to afford phosphite 17 (quantitative) which was allowed to react with anhydrous 

hydrogen peroxide (30 equiv) in dichloromethane at 0 “C for 1.5 h. Silica gel column 

chromatography of the reaction mixture (5 : 1 hexane-ethyl acetate) provided a mixture of 

desired I2-HPETE methyl ester 1814 and isomeric hydroperoxide 1914 in a 2 : 1 ratio in 74% 

overall yield from 1. Pure 18 could be obtained by further purification using straight phase 
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HPLC (COSMO SIL 4.6 mm x 25 cm, 2 ml/mitt, 100 : 0.3 hexane-isopropanol, 18: 12.9 min and 19: 20.9 

min).l5 18 was reduced with trimethylphosphite and the resulting alcohol was derivatized to 

menthoxycarbonate 16 as mentioned above. Capillary GC analysis showed that the ratio of S 

malate to R malate is 65 : 35, indicating that the transformation of 17 into 18 proceeds with a 

partially retained configuration. 16 A similar result was also obtained in the conversion of 13(S)- 

hydroxyoctadecadienoic acid (13(S)-HOD) methyl ester 20 to the corresponding hydroperoxide via 

phosphite 21 ln which 2217 was produced in 54% yield with a S/R ratio of 61 : 39 at C-13.18 In 

order to learn more. about this reaction, the phosphite 21 was oxidized to the phosphate 23 with 

bis(trimethylsily1) peroxide. 1 9 Treatment of 23 with excess anhydrous hydrogen peroxide in 

dichloromethane at 0 “C also afforded 22 (44%). However, the S/R ratio (56 : 44) was somewhat 

smaller than that obtained by the original procedure. S-enriched 12-HPETE methyl ester 18 thus 

obtained could be hydrolyzed to the corresponding free acid with 0.1 N aqueous lithium 

hydroxide-dimethoxyethane. 
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